Low temperature ionothermal synthesis of LiFeSO₄F cathode material for lithium-ion battery

Kuang-Che Hsiao

Supervisor: Prof. Tony West

23/03/2010

E-Futures DTC, Department of Engineering Materials, The University of Sheffield, UK

Phone: +44(0)7506363514; *E-mail:* dtp09kh@sheffield.ac.uk

The University Of Sheffield.

Outline

Background

> Introduction

- Material (LiFeSO₄F)
- Methodology (Ionothermal)
- Experimental procedure
- > Results and discussion
- Conclusions
- > Acknowledgements

*History.....LiFeSO*₄*F* (2009-2010)

nature

materials

ARTICLES

PUBLISHED ONLINE: 29 NOVEMBER 2009 | DOI: 10.1038/NMAT2590

A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries

N. Recham¹, J-N. Chotard¹, L. Dupont¹, C. Delacourt¹, W. Walker^{1,2}, M. Armand¹ and J-M. Tarascon^{1,2}*

Li-ion batteries have contributed to the commercial success of portable electronics, and are now in a position to influence higher-volume applications such as plug-in hybrid electric vehicles. Most commercial Li-ion batteries use positive electrodes based on lithium cobalt oxides. Despite showing a lower voltage than cobalt-based systems (3.45 V versus 4 V) and a lower energy density, LiFePO₄ has emerged as a promising contender owing to the cost sensitivity of higher-volume markets. LiFePO₄ also shows intrinsically low ionic and electronic transport, necessitating nanosizing and/or carbon coating. Clearly, there is a need for inexpensive materials with higher energy densities. Although this could in principle be achieved by introducing fluorine and by replacing phosphate groups with more electron-withdrawing sulphate groups, this avenue has remained unexplored. Herein, we synthesize and show promising electrode performance for LiFeSO₄F. This material shows a slightly higher voltage (3.6 V versus Li) than LiFePO₄ and suppresses the need for nanosizing or carbon coating while sharing the same cost advantage. This work not only provides a positive-electrode contender to rival LiFePO₄, but also suggests that broad classes of fluoro-oxyanion materials could be discovered.

Source: NATURE MATERIALS VOL 9 JANUARY 2010.

Laboratory of Reactivity and Chemistry of Solids, University of Picardie Jules Verne, France

Jean-Marie Tarascon

Michel Armand

Introduction to LiFeSO₄F cathode materials

Pros of LiFeSO₄F

- Slightly higher voltage (3.6 V versus Li)
- Tavorite structure (3D channels for Li migration)
- Low temperature synthesis (~300°C)
- Better ionic and electronic property
- Lower packing density
- Low cost

Source: J-M. Tarascon et al., Nat. Mater., 2010, 9, 68.

Cons of LiFeSO₄F

- Low capacity (~151 mAh/g)
- Not stable in water (LiFeSO₄F \rightarrow FeOOH + LiF)

Michael Faraday (1791-1867), England **<u>Charles-Augustin de Coulomb</u>** (1736-1806), France

demonstrated the relation between electricity and chemical bonding,

Capacity (mAh/g) = $[(F \times n_{Li}) / (M \times 3600)] \times 1000$

Where, F = Faraday's constant (96,500 coulombs per gm equivalent) $n_{Li} = Number of Li per formula unit of the electrode material$ <math>M = Molecular mass of the electrode material

Cathode: $LiFeSO_4F + e^- \rightarrow Li + FeSO_4F$

 $LiFeSO_4F = \frac{96500 \times 1}{177.85 \times 3600} \times 1000 = 151 \quad mAh / g$

LiFeSO₄F V.S. LiFePO₄

Material	LiFePO ₄	LiFeSO ₄ F
Average working voltage (V)	3.4	3.6
Density (g/cm ³)	3.5	3.23
Structure	1-D, Olivine	3-D, Tavorite
Theoretic specific capacity (mAh/g)	170	151
Practical specific capacity (mAh/g)	140-155	130-140
Energy Density (kWh/L)	1.9	1.6
Conductivity (S/cm)	~10 ⁻⁹	~10 ⁻⁶
Li ion diffusivity (cm²/s)	~10 ⁻¹⁴	
Cycle life	> 1000 cycle	
Safety	superior	
Cost	low	lower

downsizing the particle size

> Nano carbon conducting network

 \succ dopants

6

*However, for LiFeSO*₄*F* ???

➤ Carbon nanocoating

Summary of synthesis approaches toward the electrode materials

Source: Jean-Marie Tarascon et al., Chem. Mater. 2010, 22(3), 724.

Ionothermal Synthesis for LiFePO₄

The experiment were carried out at 250 °C in glassware containers using EMI-TFSI as ionic liquid and LiH₂PO₄, FeC₂O₄·2H₂O precursors with concentration of 2.5×10^{-3} mol/L.

Source: N. Recham et al., Chem. Mater. 2009, 21, 1096.

Ionic liquid: 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide (EMI-TFSI)

Properties and applications of ionic-liquids

Role of the ionic liquid

Source: Michel Armand et al., Nat. Mater., 2009, 8, 621.

EMI-TFSI: cation-anion pair

TGA measurements conducted in the presence of either FeSO₄ · H₂O + ionic liquid, or FeSO₄ · H₂O + ionic liquid + LiF are compared to those done with only ionic liquid or FeSO₄ · H₂O. Note that EMI-TFSI postpones the release of H₂O until temperatures greater than 280°C, temperatures at which the double ion exchange reaction (H⁺ for Li⁺ and OH⁻ for F⁻) can proceed leading to the formation of LiFeSO₄F.

Source: Jean-Marie Tarascon et al., Chem. Mater. 2010, 22(3), 724.

Flow chart of the LiFeSO₄F synthesis as a cathode material

Source: Inorganic Materials Laboratory (Room 15), Department of Engineering Materials, The University of Sheffield.

Experimental characterization of LiFeSO₄F

X-ray diffraction (XRD): to analyze phase composition of materials

Source: Ceramics and composites Laboratory (Room I6), Department of Engineering Materials, The University of Sheffield.

The theoretical X-ray power diffraction pattern (λ_{c_0}) of LiFeSO₄F of was drawn using XRD software (STOE WinX^{POW}) following lattice parameters, cell volumes and atomic coordinates for LiFeSO₄F.

Source: Supplementary information, Nat. Mater., 2010, 9, 68

XRD results of LiFeSO₄F

 $\mathbf{1}$

XRD results of LiFeSO₄F

Latent difficulties to synthesize single phase LiFeSO₄F:

- The reaction paths of ionothermal synthesis and mechanism of ion-exchange for phase stabilization of 1. LiFeSO₄F is hard to understand because of experimental temperature, pressure, composition and reaction time.
- Too many Li⁺ perhaps solve into ionic liquid due to the existence of $FeSO_4 \cdot H_2O$ phase in produced material. 2.
- It is difficult to keep the monohydrated precursor free of $Fe^{(III)}$ (Iron oxidation: $Fe^{2+} \rightarrow Fe^{3+}$) 3.

Conclusions

- The ionothermal synthesis of LiFeSO₄F cathode is quite straightforward. However, more studies need to be done to understand thermodynamic and kinetic stabilities of the ionic liquids with respect to the electrode materials.
- ➢ Ionic liquids can introduce kinetic lags in material dehydration (FeSO₄.
 H₂O → FeSO₄). Therefore, a greater effort into determining the solubility temperature dependence of the precursors need to be done because ionic liquid is active in the growing process of the newly born phases.
- To minimise the iron oxidation changed from Fe²⁺ to Fe³⁺ (Fe₂O₃ and Fe₂(SO₄)₃), ionothermal synthesis for LiFeSO₄F could be operated under an argon or a nitrogen atmosphere.

Acknowledgements

✓ Inorganic Material Laboratory/Department of Engineering Materials:

- Supervisor: Prof. Tony West (research discussion and encouragement)
- Prof. Derek C Sinclair (Teflon-lined steel bomb)
- Dr <u>Yang Liu</u> (chemicals order)
- Dr <u>Nik Reeves</u> (XRD Training)
- ✓ Bioincubator/Department of Chemical and Process Engineering:
 - <u>Mike Chen</u> (centrifuge)